

NORPINGUISONE METHYL ESTER AND NORPINGUISANOLIDE, PINGUISANE-TYPE NORIESQUITERPENOIDS FROM *PORELLA* *ELEGANTULA*

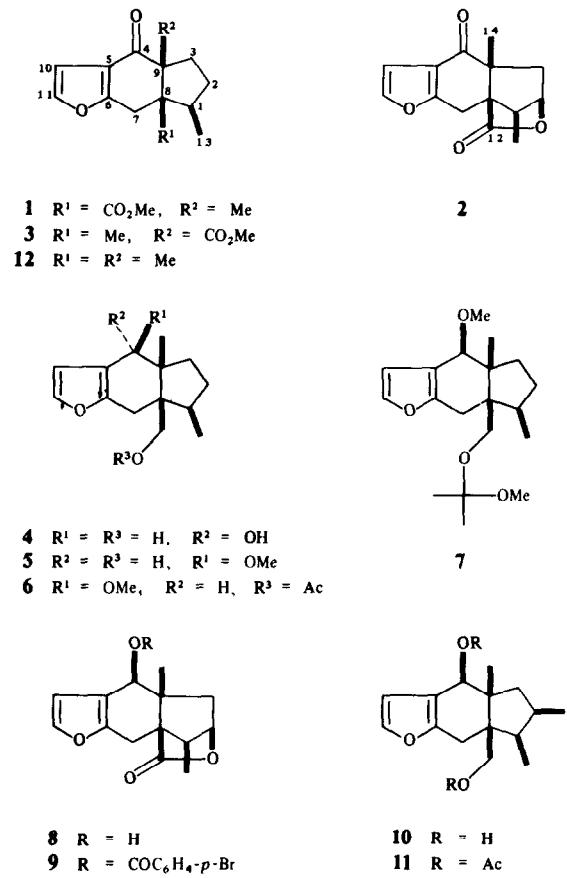
YOSHIYASU FUKUYAMA, MOTOO TORI, MARIKO WAKAMATSU and YOSHINORI ASAKAWA

Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770 Japan

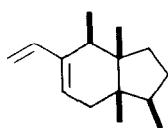
(Received 22 February 1988)

Key Word Index—*Porella elegantula*, Jungermanniales, Hepaticae; norpinguisone methyl ester, norpinguisanolide; methyl 4-oxonorpinguisan-12-oate; pinguisane-type norsesquiterpene, superoxide release inhibitor

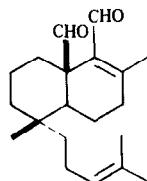
Abstract—Two new pinguisane-type norsesquiterpenoids were isolated from the liverwort *Porella elegantula*. Norpinguisone methyl ester, which showed 50% inhibition at 35 μ g/ml of the release of superoxide from guinea pig peritoneal macrophage, and norpinguisanolide were identified together with the previously known α -pinguisene, norpinguisone and perrottetianal. The structures were established by 2D NMR spectroscopy and chemical evidence. The previously reported pinguisone methyl ester was shown to be methyl 4-oxonorpinguisan-12-oate.

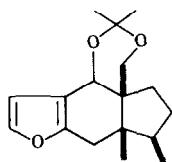

INTRODUCTION

The *Porella* species (Jungermanniales) of liverworts produce various terpenoids [1] and in particular, elaborate a number of pinguisane-type sesquiterpenes [2-5]. Although the pinguisane-type sesquiterpenes consist of a unique structure fused with a furan ring, their physiological properties have not been studied [6, 7]. In pursuit of biologically interesting substances in the liverworts [8-11], we have re-investigated *Porella elegantula* [12] which is indigenous to New Zealand and have isolated two new pinguisane-type norsesquiterpenes, norpinguisone methyl ester (**1**), as superoxide release inhibitor, and norpinguisanolide (**2**). In this paper, we report the structures of the two new sesquiterpenes, and propose a revised structure for norpinguisone methyl ester (**3**) previously isolated from *Porella vernicosa* [2].


RESULTS AND DISCUSSION

A combination of column chromatography on silica gel and Sephadex LH-20 of an ether extract of *P. elegantula* has resulted in the isolation of the two new norsesquiterpenoids, norpinguisone methyl ester (**1**) and norpinguisanolide (**2**), along with the previously known α -pinguisene (**13**) [4], norpinguisone (**12**) [2] and perrottetianal (**14**) [13].


The IR, ^1H NMR and mass spectra of compound **1** were completely identical with those of the known norpinguisone methyl ester (**3**). However, analysis of the 2D long-range ^{13}C - ^1H COSY of **1** for full assignment of its ^{13}C NMR data (Table 1) did not support the conclusion that compound **1** had the same structure as **3**. Namely, the carbon signal for the ketone at δ 197.32 showed a distinct correlation with the proton signal due to a tertiary methyl group at δ 1.12, which was further correlated with the C-3 (δ 33.27), C-8 (δ 61.83) and C-9 (δ 58.46) signals through two or three bonds. These results implied that the assignments of the methoxycarbonyl group at C-14 and the tertiary methyl group at C-12 in **3** must be


reversed for compound **1**. Moreover, additional evidence was obtained from the following chemical reactions. Reduction of **1** with lithium aluminum hydride (LAH) furnished a sole diol (**4**), the mass spectrum of which revealed intensive retro-Diels-Alder fragment ions at m/z

13

14

15

110 and 109 typical to the pinguisanes [2]. The NOE was observed between the signal due to a proton (δ 4.34) geminal to the hydroxy group and the tertiary methyl signal, indicating that the LAH reduction occurred from a less hinder convex β -side and thus yielded an α -oriented hydroxy group. Treatment of the diol (4) with 2,2-dimethoxypropane in the presence of *p*-toluenesulphonic acid afforded two products 5 and 7, neither of which corresponded to the acetonide (15). Compound 7 contained a dimethyl ketal group, which was presumably formed between the stereochemically hindered primary alcohol at C-12 and 2,2-dimethoxypropane [14], and was instantly converted to compound 5 on exposure to 1 N HCl. The acetate (6) available from 5 upon acetylation was subjected to difference NOE experiments and thereby the NOEs were observed as shown in Fig. 1. The NOEs for the signals due to the acetoxyethylene at C-12 were observed upon irradiation of the C-13 and C-14 methyl signals, and the doublet methylene signals of H-7, respectively. This suggested that the CO_2Me and Me groups in 1 must be located at C-8 and C-9, respectively, and that these groups took the same spatial arrangement as that of the Me-13 group. In addition, detection of the NOE between the signal (δ 3.95) due to a proton adjacent to the methoxyl group and the β -proton signal on the furan ring substantiated the C-4 position of the ketone function in 1. It should be emphasized that the configuration for the OMe group at C-4 in 6 was inverted to be β in the course of the methylation since there was no NOE between the proton signals at C-4 and the Me signal at C-14. An inversion of the configuration on C-4 was reasonably rationalized as being due to a SN_2 type displacement of the oxonium ion formed between a secondary hydroxyl

group and 2,2-dimethoxypropane in the presence of an acid catalyst by methanol generated *in situ* from the reagent [15]. This unusual reaction was presumably attributable to the fact that both hydroxyl groups of the diol (5) were not in a position to form an acetonide. Consequently, the structure of norpinguisone methyl ester was represented as 1, and hence the structure of the previously reported [2] norpinguisone methyl ester (3) was revised to be methyl 4-oxonorpinguisan-12-oate.

Compound 2 had the molecular formula $\text{C}_{14}\text{H}_{14}\text{O}_4$ (M^+ at m/z 246 0890), and its IR and UV spectra displayed the presence of a conjugated carbonyl group (1680 and 1605 cm^{-1} , 212 nm) and a γ -lactone moiety (1780 cm^{-1}). The ^1H and ^{13}C NMR spectra (Tables 1 and 2) indicated the presence of a fused furan ring [δ 6.69 (d , $J = 1.7\text{ Hz}$) and 7.42 (dd , $J = 1.7, 0.1\text{ Hz}$)], one tertiary methyl (δ 1.24) and one secondary methyl [δ 1.03 (d , $J = 6.4\text{ Hz}$) group as well as of two CH_2 , one CH , two quarternary carbons, and one CH bearing an oxygen-function. These spectral features revealed that 2 belonged to a pinguisane-type norsesquiterpene with a γ -lactone unit. This was additionally supported by the observation of an intensive retro-Diels-Alder fragment ion at m/z 108 typical to the norpinguisones 1 and 12, and a base peak at m/z 192 derived from putative successive β -cleavages followed by aromatization (Fig. 2). Thus, compound 2 had a furano-cyclohexanone ring characteristic of 1. The 2D long-range $^{13}\text{C}-^1\text{H}$ COSY spectrum of 2 was measured to clarify the location of the γ -lactone moiety. As shown in Table 3, the carbonyl signal at C-4 showed only correlation with the proton signal due to Me-14 which had further cross peaks with the C-3, C-8 and C-9 carbon signals. In addition, the signal due to a lactone carbonyl group showed a correlation with the H-2 and H-7 β proton signals. These results suggested the presence of a 5-membered 12,2-olide and the tertiary methyl group at C-9. Reduction of 2 with LAH followed by acetylation yielded a triacetate (11) (1730 and 1740 cm^{-1} ; δ 2.06, 2.09 and 2.14). The results of difference NOE experiments are shown in Fig. 3. The NOEs for the AB type signals

Table 1 ^{13}C NMR spectral data for compounds 1 and 2*

C	1	2
1	39.87	47.23
2	29.53	82.61
3	33.27	39.38
4	197.32	195.34
5	116.75	118.15
6	163.21	161.43
7	25.14	19.66
8	61.83	59.96
9	58.46	50.36
10	107.09	107.36
11	144.44	144.09
12	173.16	175.35
13	15.58	10.07
14	20.64	21.93
CO_2Me	51.63	

* All assignments were confirmed by the C-H and long-range C-H COSYs.

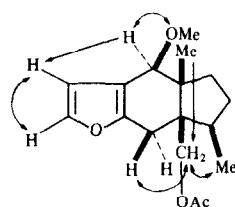
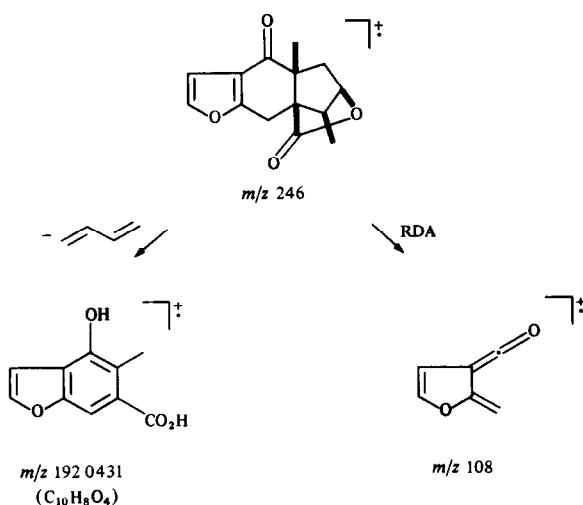
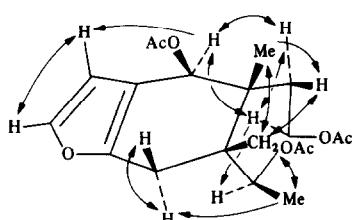




Fig. 1 The observed NOEs for compound 6 (indicated by arrows)

Table 2 ^1H NMR (400 MHz) spectral data for compounds **1**, **2**, **8**, and **11**

H	1	2	8	11
1	2.10 (<i>m</i>)	2.11 (<i>q</i> , 6.4)	2.41 (<i>q</i> , 6.6)	2.32 (<i>dq</i> , 7.7, 7.3)
2 α	1.81 (<i>dddd</i> , 12.7, 9.8, 6.6, 3.0)*	4.61 (<i>dd</i> , 1.9, 0.1)	4.64 (<i>d</i> , 2.4)	5.38 (<i>ddd</i> , 7.7, 7.7, 4.2)
2 β	1.55 (<i>dddd</i> , 12.7, 9.5, 9.5, 3.4)			
3 α	2.72 (<i>ddd</i> , 13.2, 9.8, 3.4)	2.79 (<i>dd</i> , 14.0, 1.9)	2.21 (<i>dd</i> , 13.6, 2.4)	2.30 (<i>dd</i> , 14.4, 7.7)
3 β	2.10 (<i>m</i>)	1.83 (<i>dd</i> , 14.0, 0.1)	1.81 (<i>d</i> , 13.6)	1.58 (<i>dd</i> , 14.4, 4.2)
4			4.71 (<i>t</i> , 1.9)	5.56 (<i>t</i> , 1.5)
7 α	3.28 (<i>d</i> , 18.8)	2.92 (<i>d</i> , 18.5)	2.61 (<i>ddd</i> , 18.2, 1.9, 1.0)	2.61 (<i>dd</i> , 17.5, 1.5)
7 β	3.53 (<i>d</i> , 18.8)	3.48 (<i>dd</i> , 18.5, 0.1)	3.18 (<i>ddd</i> , 18.2, 1.9, 1.0)	2.74 (<i>dd</i> , 17.5, 1.5)
10	6.64 (<i>d</i> , 2.0)	6.69 (<i>d</i> , 1.7)	6.41 (<i>d</i> , 1.9)	6.18 (<i>d</i> , 1.8)
11	7.35 (<i>d</i> , 2.0)	7.42 (<i>dd</i> , 1.7, 0.1)	7.35 (<i>dt</i> , 1.9, 1.0)	7.26 (<i>d</i> , 1.8)
12				4.16 (<i>d</i> , 14.4)
13	0.91 (<i>d</i> , 6.8)	1.03 (<i>d</i> , 6.4)	1.03 (<i>d</i> , 6.6)	0.96 (<i>d</i> , 7.3)
14	1.12 (<i>s</i>)	1.24 (<i>s</i>)	0.97 (<i>s</i>)	1.10 (<i>s</i>)
CO ₂ Me	3.77 (<i>s</i>)			
Ac				2.06, 2.09 and 2.14 (each <i>s</i>)

*Coupling constants (*J* in Hz) are given in parentheses.

Fig. 2 Mass spectral fragmentation of compound **2**.Fig. 3 The observed NOEs for compound **11** (indicated by arrows)Table 3. C-H correlation in the long-range C-H COSY of compound **2**

C	Correlated H
1	Me-13, H-3 β , H-7 β
2	Me-13, H-3 β
3	Me-14
4	Me-14
5	H-10, H-11, H-7 α , H-7 β
6	H-10, H-11, H-7 α , H-7 β
7	
8	Me-13, Me-14, H-2, H-7 α , H-7 β
9	Me-14, H-3 α , H-2, H-7 α
10	H-11
11	H-10
12	H-2, H-7 β
13	
14	H-3 α , H-3 β

due to the acetoxyethylene appeared at δ 4.16 and 4.25 and were observed upon irradiation of the signals due to the Me-13, Me-14, H-3 β and H-7 β , respectively, indicating that the CH₂OAc was located at C-8 and took the same spatial arrangement as those of the Me-13 and Me-14. Furthermore, this was supported from the observation of the NOEs between the triplet signals due to a proton attached to the carbon bearing an acetoxy group at C-4 and the signals due to H-2, H-3 α and H-10 that the OAc group at C-4 in **11** took a β -orientation and thus the ketone function in **2** was placed at C-4. The evidence revealed that the structure of norpinguisanolide was shown as **2** including its relative stereochemistry. The absolute configuration of **2** was examined by the CD

spectrum of the *p*-bromobenzoate derivative (**9**) of **2**, which was obtained from sodium borohydride reduction followed by *p*-bromobenzoylation. The β -configuration of the hydroxy group at C-4 in **8** was confirmed by a NOESY experiment. The CD spectrum of **9** had a first negative Cotton effect ($\Delta\epsilon = -2.5$) at 250 nm arising from the interaction between the bromobenzoyl group at C-4 and the furan chromophore [16] indicating the C-14 was represented as *S*. Thus, the absolute stereochemistry of norpinguisanolide was depicted as **2**. The five-membered-ring lactone moiety existing in **2** is surrounded by the two methyl groups and placed under a stereo-chemically hindered environment. In fact, we failed in ring opening of the γ -lactone by the usual basic conditions, since **2** was resistant to alkaline hydrolysis.

Norpunguisone methyl ester (**1**) exhibited 50% inhibition at 35 $\mu\text{g}/\text{ml}$ of the release of superoxide from the guinea pig peritoneal macrophage induced by formyl methionyl leucyl phenylalanine (FMLP) [17], whereas norpinguisanolide (**2**) had no activity even at a high concentration as 50 $\mu\text{g}/\text{ml}$. Recently, it has been made clear [18, 19] that superoxide plays an important role in various diseases such as rheumatoid arthritis and myocardial ischemia, and superoxide release inhibitors could be effective for preventing or curing such a disease. The relationship between the structure of the pinguisane-type sesquiterpene and its activity is now under investigation.

EXPERIMENTAL

Mps uncorr ^1H (400 and 90 MHz) and ^{13}C NMR (100 MHz) CDCl_3 , TMS as int standard. CC silica gel (Merck, 70–230 mesh and Wakogel C-300) TLC precoated silica gel plates F_{254} (Merck, 0.25 mm). Spots were visualized by UV (254 nm) and CeSO_4 –30% H_2SO_4 .

Plant material The liverwort, *Porella elegantula* were collected in New Zealand in November, 1986 and identified by Dr E. O. Campbell. A voucher specimen has been deposited at the Herbarium of Institute of Pharmacognosy, Tokushima Bunri University.

Extraction and isolation Air-dried and powdered plants (37 g) were extracted with Et_2O (310 ml) at room temp for 12 days. The resultant Et_2O extract was evapd *in vacuo* to give a crude extract (1.32 g), which was divided by CC on silica gel using a *n*-hexane–EtOAc gradient into 8 fractions (frs 1, 2 (*n*-hexane–EtOAc, 9:1), frs 3, 4 (*n*-hexane–EtOAc, 4:1), frs 5, 6 (*n*-hexane–EtOAc, 3:2), fr 7 (*n*-hexane–EtOAc, 2:3), fr 8 (EtOAc, 100%). Fr 1 afforded α -pinguisene (**13**) (107 mg). Fr 2 (186 mg) was chromatographed by CC on silica gel (*n*-hexane–EtOAc, 1:1) to afford norpinguisone (**12**) (53 mg). Frs 3, 4 (321 mg) was chromatographed on Sephadex LH-20 (40 ml) eluting with *n*-hexane– CH_2Cl_2 (4:1), followed by CC on silica gel (C-300) (CH_2Cl_2 –EtOAc, 100% → 1:1) to give norpinguisone methyl ester (**1**) (145 mg) and perrottetianol A (**14**) (67 mg). Fr 6 (116 mg) was purified by Sephadex LH-20 (MeOH– CH_2Cl_2 , 7:3) to give norpinguisanolide (**2**) (87 mg).

Norpunguisone methyl ester (1**)** Colourless oil, $[\alpha]_D^{20} = -60.2$ (CHCl_3 , *c* 0.91), MS *m/z* (rel int) 262 (1206) [M^+] (calc 262 (1205 for $\text{C}_{15}\text{H}_{18}\text{O}_4$) (27), 203 (39), 108 (100), 80 (37), UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm (*ε*) 208 (9500), 268 (4700), IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm^{-1} 1724 (ester), 1640 (conj C=O), 1620 (C=C), ^1H and ^{13}C NMR see Tables 2 and 1.

Reduction of **1 with LiAlH_4** To a suspension of powdered LiAlH_4 (53 mg, 1.39 mmol) in dry Et_2O (2 ml) was added dropwise a soln of **1** (18 mg, 0.07 mmol) in Et_2O (0.5 ml). The reaction mixture was stirred at room temp for 1 hr and then under reflux for 30 min. After cooling to 0° excess EtOAc, 5

drops of H_2O and 1 drop of 1 N HCl were added successively and then the ppt was filtered *in vacuo* and washed well with EtOAc. The filtrate was washed successively with 1 N HCl, 5% NaHCO_3 soln and brine, and dried over MgSO_4 . The evapn of solvent afforded an oil, which was purified by CC on silica gel (CH_2Cl_2 –EtOAc, 3:1) to yield the diol (**4**) (10.9 mg) as a colourless oil, IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm^{-1} 3340 (OH), 1502 (furan), MS *m/z* (rel int) 218 [$\text{M} - 18$] (46), 110 (100), 109 (95), ^1H NMR (90 MHz) δ 1.04 (3H, *d*, *J* = 6.8 Hz, Me-13), 1.18 (3H, *s*, Me-14), 2.45 (1H, *d*, *J* = 17.6 Hz, H-7), 2.78 (1H, *d*, *J* = 17.6 Hz, H-7), 3.57 (1H, *d*, *J* = 11.0 Hz, H-12), 3.86 (1H, *d*, *J* = 11.0 Hz, H-12), 4.34 (1H, *br s*, H-4), 6.36 (1H, *d*, *J* = 20 Hz, H-10), 7.24 (1H, *d*, *J* = 20 Hz, H-11).

Treatment of **4 with 2,2-dimethoxypropane** A mixture of **4** (10.9 mg) and 2,2-dimethoxypropane (2 ml) was stirred in the presence of *p*-toluenesulphonic acid (5 pieces) at room temp overnight. Na_2CO_3 was added and stirring was continued for 30 min. After filtering and washing with Et_2O , the evapn of the filtrate gave an oil (9.6 mg), which was purified by CC on silica gel (CH_2Cl_2 –EtOAc, 4:1) to furnish compounds **5** (2.7 mg) and **7** (3.5 mg). **5** MS *m/z* (rel int) 218 [$\text{M} - 32$] (32), 124 (100), ^1H NMR (90 MHz) δ 1.10 (3H, *d*, *J* = 6.3 Hz, Me-13), 1.23 (3H, *s*, Me-14), 2.36 (1H, *d*, *J* = 19.5 Hz, H-7), 2.84 (1H, *d*, *J* = 19.5 Hz, H-7), 3.43 (1H, *d*, *J* = 12.0 Hz, H-12), 3.47 (3H, *s*, OMe), 3.67 (1H, *d*, *J* = 12.0 Hz, H-12), 3.88 (1H, *s*, H-4), 6.35 (1H, *d*, *J* = 2.3 Hz, H-10), 7.26 (1H, *d*, *J* = 2.3 Hz, H-11), **7** ^1H NMR (90 MHz) δ 1.01 (3H, *d*, *J* = 6.8 Hz, Me-13), 1.07 (3H, *s*, Me-14), 1.30 (6H, *s*), 2.54 (2H, *br s*, H-7), 3.13 (3H, *s*, OMe), 3.26 (1H, *d*, *J* = 7.0 Hz, H-12), 3.38 (1H, *d*, *J* = 7.0 Hz, H-12), 3.50 (3H, *s*, OMe), 3.82 (1H, *br s*, H-4), 6.34 (1H, *d*, *J* = 1.8 Hz, H-10), 7.26 (1H, *d*, *J* = 1.8 Hz, H-11).

Acetylation of **5** A mixture of **5** (2.7 mg), Ac_2O and pyridine (0.3 ml) was allowed to stand overnight at room temp. The usual work-up afforded the acetate (**6**) (2.8 mg) as colourless oil, ^1H NMR (400 MHz) δ 0.95 (3H, *s*, Me-14), 0.99 (3H, *d*, *J* = 6.4 Hz, Me-13), 2.06 (3H, *s*, OAc), 2.54 (2H, *d*, *J* = 2.8 Hz, H-7), 3.60 (3H, *s*, OMe), 3.95 (1H, *t*, *J* = 2.8 Hz, H-4), 6.39 (1H, *d*, *J* = 2.2 Hz, H-10), 7.25 (1H, *d*, *J* = 2.2 Hz, H-11).

Acid treatment of **7** To a soln of **7** (2.0 mg) in MeOH (1 ml) was added 3 drops of 1 N HCl and the mixture was allowed to stand at room temp for 10 min. The usual work-up afforded an oil (1 mg), the ^1H NMR spectrum and TLC behaviour of which were identical with those of compound **5**.

Norpunguisanolide (2**)** Colourless plates (from *n*-hexane), mp 132–134.0°, $[\alpha]_D^{20} = -125.0$ (CHCl_3 , *c* 0.47). MS *m/z* (rel int) 246 (890) [M^+] (calc 246 (892 for $\text{C}_{14}\text{H}_{14}\text{O}_4$) (98), 192 (0431 (calc 192 (04323 for $\text{C}_{10}\text{H}_8\text{O}_4$) (100), 108 (70), UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm (*ε*) 212 (13 100), 263 (8700), IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm^{-1} 3410 (furan), 1780 (γ -lactone), 1680 (conj C=O), 1605 (C=C), 1515 and 904 (furan), ^1H and ^{13}C NMR see Tables 2 and 1.

Reduction of **2 with NaBH_4** To a soln of **2** (12.9 mg) in MeOH (3 ml) was added NaBH_4 (30 mg) and the reaction mixture was stirred at room temp for 2 hr. EtOAc (25 ml) and 1 N HCl (10 ml) were added successively and stirring was continued for 5 min. The upper layer was washed with brine, and dried over MgSO_4 . The evapn of solvent *in vacuo* yielded compound **8** (10.8 mg) as an oil, ^1H NMR see Table 2.

Reduction of **2 with LiAlH_4** To a suspension of LiAlH_4 (25 mg) in dry Et_2O (2 ml) was added a soln of **2** (4.8 mg) in dry Et_2O (0.5 ml) at room temp and then the reaction mixture was refluxed for 1 hr. The work-up similar to that for **1** afforded the diol (**10**) (2.0 mg) as an oil, IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm^{-1} 3600 (OH), 3350 (OH), ^1H NMR (90 MHz) δ 0.94 (3H, *d*, *J* = 7.0 Hz, Me-13), 0.95 (3H, *s*, Me-14), 1.67 (1H, *dd*, *J* = 13.6, 4.3 Hz, H-3 β), 2.54 (1H, *dd*, *J* = 13.6, 6.6 Hz, H-3 α), 3.44 (1H, *d*, *J* = 11.4, H-12), 3.67 (1H, *d*, *J* = 11.4 Hz, H-12), 4.25 (2H, *m*, H-2 and 4), 6.31 (1H, *d*, *J* = 1.8 Hz, H-10), 7.26 (1H, *d*, *J* = 1.8 Hz, H-11).

Acetylation of 10 A mixture of **10** (2.0 mg), Ac_2O (3 drops) and pyridine (5 drops) was allowed to stand at room temp overnight. The usual work up afforded the triacetate (**11**) (2.1 mg) as an oil, IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm^{-1} 1740, 1730 (OAc), 1230, MS m/z (rel. int.). 318 [$\text{M} - 60$]⁺ (15), 161 (39), 110 (62), 43 (100). ¹H NMR see Table 2.

p-Bromobenzoylation of 8 A mixture of **8** (14.5 mg), *p*-bromobenzoyl chloride (60 mg) and pyridine (2 ml) was allowed to stand at room temp overnight. The usual work-up afforded an oil, which was purified by CC on silica gel (CH_2Cl_2 , 100%) to give the compound **9** as crystals, Colourless prisms (from Et_2O), mp 114–115°, UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm (ϵ) 208 (2290), 248 (17500), CD (EtOH) $\Delta\epsilon$ 250 nm –2.5, $\Delta\epsilon$ 227 nm –1.9, ¹H NMR (90 MHz) δ 1.08 (3H, *d*, *J* = 6.6 Hz, Me-13), 1.16 (3H, *s*, Me-14), 1.80 (1H, *d*, *J* = 14.2 Hz, H-3 β), 2.34 (1H, *dd*, *J* = 14.2, 2.2 Hz, H-3 α), 2.62 (1H, *q*, *J* = 6.6 Hz, H-1), 2.66 (1H, *dd*, *J* = 18.6, 1.8 Hz, H-7 α), 3.34 (1H, *dd*, *J* = 18.6, 1.8 Hz, H-7 β), 4.65 (1H, *d*, *J* = 2.2 Hz, H-2), 6.16 (1H, *d*, *J* = 1.9 Hz, H-10), 6.21 (1H, *t*, *J* = 1.8 Hz, H-4), 7.32 (1H, *d*, *J* = 1.9 Hz, H-11), 7.62 and 7.95 (each 2H, *d*, *J* = 8.6 Hz)

Acknowledgements—We thank Mr Y Nakano, Otsuka Pharmaceutical Co Ltd for carrying out the bioassay. The present work was supported in part by Grant-in-Aid for Cancer Research (Y A) of Ministry of Health and Human Welfare

REFERENCES

1. Asakawa, Y (1982) *Progress in the Chemistry of Organic Natural Products* (Herz, W., Grisebach, H and Kirby, G W, eds) Vol 42, p 1 Springer, New York
2. Asakawa, Y and Aratani, T (1976) *Bull Soc Chim Fr* **1469**
3. Asakawa, Y, Toyota, M, Takemoto, T and Suire, C (1976) *Phytochemistry* **15**, 1979
4. Asakawa, Y, Toyota, T and Takemoto, T. (1978) *Phytochemistry* **17**, 457
5. Asakawa, Y, Toyota, M, Takemoto, T. and Suire, C (1979) *Phytochemistry* **18**, 1349
6. Asakawa, Y and Aratani, T (1977) *Misc. Bryol. Lichenol.* **7**, 144
7. Wada, K and Munakata, K (1971) *Agric Biol. Chem.* **35**, 115
8. Asakawa, Y (1987) *Farmashia* **23**, 455
9. Asakawa, Y (1984) *J. Hattori Bot. Lab.* **56**, 215
10. Asakawa, Y. (1984) *Rev. Latinoam. Quim.* **14**, 109
11. Asakawa, Y (1981) *J. Hattori Bot. Lab.* **50**, 123.
12. Asakawa, Y and Campbell, E O (1982) *Phytochemistry* **21**, 2663
13. Asakawa, Y, Toyota, M and Takemoto, T. (1979) *Phytochemistry* **18**, 1681
14. Hampton, A (1965) *J. Am. Chem. Soc.* **87**, 4654
15. Rachele, J R (1963) *J. Org. Chem.* **28**, 2898
16. Stonard, R J., Trainor, D A., Nakatani, M. and Nakanishi, K (1983) *J. Am. Chem. Soc.* **105**, 130
17. Matsumoto, T, Takashige, K and Minakami, S (1979) *Biochem. Biophys. Res. Comm.* **88**, 974
18. Vusse, G J and Reneman, R. S (1985) *Trend. Pharmacol. Sci.* 76
19. Nakano, M (1986) *Farmashia* **22**, 352